
PostgreSQL & the
Postgres community

JPUG pgCon 2013, Tokyo

Peter Geoghegan
(Rhymes with “Ronald Reagan”)

pg@heroku.com
Twitter: @sternocera

1

mailto:pg@heroku.com
mailto:pg@heroku.com

About me

• An enthusiast of PostgreSQL since around 2006, though
started contributing fairly recently - early 2011.

• Work for Heroku; Cloud platform that lets developers
focus on their application. Heroku can take some credit
for popularizing PostgreSQL among “new wave” of
application developers.

• Used to work as a consultant, so have seen many types
of PostgreSQL databases and use-cases.

2

About me (Cont.):
Projects

• pg_stat_statements normalization - built on
the work of Takahiro Itagaki of NTT.

• Performance features.

• Currently working on “UPSERT”.

3

What is “UPSERT”?

• Very simple idea - developer wants to either insert
a new row, or update an existing one instead if that
is appropriate (because to insert would create a
undesired duplicate).

• Very notable omission, though can be worked
around.

• Complex concurrency issues frustrate
implementation. Simple at first, but the longer you
look, the more complex it becomes.

• I have been looking for quite a while now!
4

WITH rej AS
(
 INSERT INTO test(a, b)
 VALUES(123, 'Vancouver'),
 (456, 'Dublin'),
 (789, 'Tokyo')
 ON DUPLICATE KEY LOCK FOR UPDATE
 RETURNING REJECTS *
)
UPDATE test SET test.b = rej.b FROM rej
WHERE test.a = rej.a;

• For each tuple, INSERTs, or “projects” rejects for UPDATE.

• I expect use with writeable common table expressions as shown here will
become idiomatic.

• Relies on unique btree indexes (Primary keys/unique constraints).

• Some degree of generality - can be composed, with ability to, for example,
DELETE rather than UPDATE.

• Some MERGE-like capabilities (e.g. insert-rejected tuples can be “pipelined”,
or UPDATE’d or DELETE’d based on some criteria), but not as powerful.

5

Why work on
PostgreSQL?

• Found underlying philosophy - emphasis on
extensibility, consistency, rich datatype support and
support for semi-structured data, and extensible
indexing - elegant and deeply compelling.

• Code quality very high - the mark of a project built to
last many years. When making such a big personal
investment, we want it to pay off!

• Great community. Opportunity to learn from others
with many years of experience.

6

• There are many interesting problems to solve. Database
systems touch upon many areas of computer science.

• Apart from core concepts in transaction processing, an
understanding of other computer science concepts is
helpful too. This includes for example compiler theory,
operating system design, and a general understanding of
both common algorithms (e.g. Quicksort) and more
novel algorithms (e.g. HyperLogLog).

• Desire to do something socially useful - to “make a
difference” and help people in my own small way.

Why work on
PostgreSQL? (Cont.)

7

Bonus: I get to travel around the world and learn about
the interesting ways in which people are working with

PostgreSQL!

Why work on
PostgreSQL? (Cont.)

8

Many contributors, one
great database system
• Each person’s

contribution “anneals”
into a single, coherent
whole.

• Every contributor and
company has their own
motives, presumably
many similar to my own.

• The “scratch my own
itch” motivation is
perhaps overall the
single strongest.

9

PostgreSQL
Not so much a database as a data platform

10

What’s a data platform?

• Fundamentally, it’s the job of a database to provide
a generalized solution to data management
problems. They offer a flexible, reusable solution.

• Basically, all database internals developers solve
complex problems around things like concurrency
control, crash safety and general data integrity so
you don’t have to.

• In the 1980s, professor Stonebraker created the
POSTGRES project to make rich datatypes a first-
order concern.

11

What’s a data platform?
(Cont.)

• At that time, it proved necessary to solve
problems like alternative date representations (e.g.
in financial applications) in the database.

• Ad-hoc methods work, but managing that
complexity does not scale.

• Asking complicated questions about the data
requires custom indexing.

• PostgreSQL has many great strengths, but I believe
that its greatest, enduring strength is its flexibility.

12

What’s a data platform?
(Cont.)

• If the core function of a database is to provide
flexibility, and a generalized solution, a data
platform could be described as bringing that to its
logical extreme: virtually any use-case can be
supported, including support for very diverse data
types. It’s easier to describe it with reference to
real examples than in the abstract, though.

• Synergy with other projects is important here. The
prime example is PostGIS, but they are only one
example.

13

Example: Logical
replication

• Essentially, core infrastructure for plugins
that are interested in doing something with
data as it is written.

• Plugins “decode” WAL to logical
representation.

• Logical as opposed to physical
representation can be constructed by extra
write-ahead log (WAL) information.

14

The difference in WAL
representation for replication

Physical Logical

Tiny overhead Modest overhead

Inflexible; cannot take out
information about just one thing of

interest.

Totally flexible; as much or as little
as you want.

Refers to unstable identifiers like
relfilenode. Ties binary

representation to data (e.g. machine
endianness, build time settings).

Logical records describe changes in
a way that makes sense to anyone

or anything.

Great for just simple replication and
disaster recovery

Will support online in-place
upgrades, prevent VACUUM from
causing recovery conflicts, cross-
database replication, writes on

standbys, multi-master replication
and more.

15

Example: writeable
foreign-data wrappers
• PostgreSQL 9.3 feature. Used by

postgres_fdw.

• Clever

• Only sends needed data.

• Foreign cost estimates influence local plan -
statistics locally held.

• Predicate (WHERE clause) push-down.

16

Example: Enhanced
JSON type

• In the past, JSON seemed to me like a rough “specification” for an
interchange format.

• I understand now, though: JSON is an interchange format that’s very easy to
work with from scripting languages, often manipulated as built-in data
structures.

• Vagueness of spec around things like numeric precision turns out to be
okay: that’s the price of a truly flexible interchange format.

• If Postgres did better than the “lowest common denominator”, what would
be the point? You’d have to worry about the lowest common denominator
breaking things, and that isn’t very flexible!

• Not for every application, though can of course be used selectively within an
application. That makes it compelling where flexibility is most important.

17

JSON for semi-
structured data

{
 "name": "Brooks DuBuque",
 "age": 36,
 "siblings": 2,
 "numbers": [
 {
 "type": "work",
 "number": "684.573.3783 x368"
 },
 {
 "type": "home",
 "number": "625.112.6081"
 }
]
}

18

JSON manipulation

CREATE OR REPLACE FUNCTION
get_numeric(key text, data json)
RETURNS numeric $$
 return JSON.parse(data)[key];
$$ LANGUAGE plv8 IMMUTABLE STRICT;

select avg(get_numeric('age', data))
from people;
-[RECORD 1]------------
avg | 24.4913870000000000
Time: 6641.060 ms

19

JSON futures

• Work underway for 9.4 - binary
representation of JSON.

• GIN and GiST index support is being
worked on too. Should be possible to
query data in an almost arbitrary fashion
efficiently.

• Also proposals around JSON CRUD
functions.

20

Thanks!

ご清聴ありがとうご
ざいました

Questions?
21

