PostgreSQL & the
Postgres community

JPUG pgCon 201 3, Tokyo

Peter Geoghegan

(Rhymes with “Ronald Reagan”)
pg@heroku.com

Twitter: @sternocera

1 heroku

mailto:pg@heroku.com
mailto:pg@heroku.com

About me

® An enthusiast of PostgreSQL since around 2006, though
started contributing fairly recently - early 201 I.

® Work for Heroku; Cloud platform that lets developers
focus on their application. Heroku can take some credit
for popularizing PostgreSQL among “new wave” of
application developers.

® Used to work as a consultant, so have seen many types
of PostgreSQL databases and use-cases.

About me (Cont.):
Projects

® pg stat statements normalization - built on
the work of Takahiro Itagaki of NTT.

® Performance features.

® Currently working on “UPSERT™.

What is “UPSERT”?

Very simple idea - developer wants to either insert
a new row, or update an existing one instead if that
is appropriate (because to insert would create a
undesired duplicate).

Very notable omission, though can be worked
around.

Complex concurrency issues frustrate
implementation. Simple at first, but the longer you
look, the more complex it becomes.

| have been looking for quite a while now!

4

WITH rej AS

(
INSERT INTO test(a, b)

VALUES (123, 'Vancouver'),
(456, 'Dublin'),
(789, 'Tokyo')
ON DUPLICATE KEY LOCK FOR UPDATE
RETURNING REJECTS *
)
UPDATE test SET test.b = rej.b FROM rej
WHERE test.a = rej.a;

® For each tuple, INSERTSs, or “projects” rejects for UPDATE.

® | expect use with writeable common table expressions as shown here will
become idiomatic.

® Relies on unique btree indexes (Primary keys/unique constraints).

® Some degree of generadlity - can be composed, with ability to, for example,
DELETE rather than UPDATE.

® Some MERGE-like capabilities (e.g. insert-rejected tuples can be “pipelined”,
or UPDATE'd or DELETE'd based on some criteria), but not as powerful.
5

VVhy work on
PostgreSQL?

® Found underlying philosophy - emphasis on
extensibility, consistency, rich datatype support and
support for semi-structured data, and extensible
indexing - elegant and deeply compelling.

® (Code quality very high - the mark of a project built to
last many years.When making such a big personal
investment, we want it to pay off!

® Great community. Opportunity to learn from others
with many years of experience.

6

VVhy work on
PostgreSQL? (Cont.)

® There are many interesting problems to solve. Database
systems touch upon many areas of computer science.

® Apart from core concepts in transaction processing, an
understanding of other computer science concepts is
helpful too. This includes for example compiler theory,
operating system design, and a general understanding of
both common algorithms (e.g. Quicksort) and more
novel algorithms (e.g. HyperLoglog).

® Desire to do something socially useful - to “make a
difference” and help people in my own small way.

7

VWhy work on
PostgreSQL? (Cont.)

Bonus: | get to travel around the world and learn about

the interesting ways in which people are working with
PostgreSQL!

Antarctica’

8

Many contributors, one
great database system

’
® Each person’s e
contribution “anneals” P
into a single, coherent
whole.

® Every contributor and
company has their own
motives, presumably
many similar to my own.

® The “scratch my own
itch” motivation is
perhaps overall the
single strongest.

PostgreSQL

Not so much a database as a data platform

What's a data platform?

® Fundamentally, it’s the job of a database to provide
a generalized solution to data management
problems. They offer a flexible, reusable solution.

® Basically, all database internals developers solve
complex problems around things like concurrency
control, crash safety and general data integrity so
you don’t have to.

® |n the 1980s, professor Stonebraker created the
POSTGRES project to make rich datatypes a first-
order concern.

What's a data platform?
(Cont.)

® At that time, it proved necessary to solve
problems like alternative date representations (e.g.
in financial applications) in the database.

® Ad-hoc methods work, but managing that
complexity does not scale.

® Asking complicated questions about the data
requires custom indexing.

® PostgreSQL has many great strengths, but | believe
that its greatest, enduring strength is its flexibility.

What's a data platform?
(Cont.)

® |f the core function of a database is to provide
flexibility, and a generalized solution, a data
platform could be described as bringing that to its
logical extreme: virtually any use-case can be
supported, including support for very diverse data
types. It’s easier to describe it with reference to
real examples than in the abstract, though.

® Synergy with other projects is important here.The
prime example is PostGIS, but they are only one
example.

Example: Logical
replication

® Essentially, core infrastructure for plugins

that are interested in doing something with
data as it is written.

® Plugins “decode” WAL to logical
representation.

® | ogical as opposed to physical

representation can be constructed by extra
write-ahead log (WAL) information.

| 4

The difference in WAL
representation for replication

Physical Logical ‘

Tiny overhead Modest overhead

Inflexible; cannot take out
information about just one thing of
interest.

Totally flexible; as much or as little
as you want.

Refers to unstable identifiers like
relfilenode. Ties binary
representation to data (e.g. machine
endianness, build time settings).

Logical records describe changes in
a way that makes sense to anyone
or anything.

Will support online in-place
upgrades, prevent VACUUM from
Great for just simple replication and| causing recovery conflicts, cross-

disaster recovery database replication, writes on
standbys, multi-master replication
and more.

Example: writeable

foreign-data wrappers

® PostgreSQL 9.3 feature. Used by
postgres_fdw.

® (Clever

® Only sends needed data.

® Foreign cost estimates influence local plan -
statistics locally held.

® Predicate (WHERE clause) push-down.

Example: Enhanced
|SON type

In the past, JSON seemed to me like a rough “specification” for an
interchange format.

| understand now, though: JSON is an interchange format that’s very easy to
work with from scripting languages, often manipulated as built-in data
structures.

Vagueness of spec around things like numeric precision turns out to be
okay: that’s the price of a truly flexible interchange format.

If Postgres did better than the “lowest common denominator”, what would
be the point?! You'd have to worry about the lowest common denominator
breaking things, and that isn’t very flexible!

Not for every application, though can of course be used selectively within an
application. That makes it compelling where flexibility is most important.

JSON for semi-
structured data

"name": "Brooks DuBuque",
"age'": 36,

"siblings": 2,

"numbers": |

{
"type": "work",
"number": "684.573.3783 x368"
b
{
"type": "home",
"number": "625.112.6081"
}

JSON manipulation

CREATE OR REPLACE FUNCTION
get numeric(key text, data json)
RETURNS numeric SS$S
return JSON.parse(data)[key];
SS$ LANGUAGE plv8 IMMUTABLE STRICT;

select avg(get numeric('age', data))
from people;

—[RECORD 1 J-———————————

avg | 24.4913870000000000

Time: 6641.060 ms

JSON futures

Work underway for 9.4 - binary
representation of JSON.

GIN and GiST index support is being
worked on too. Should be possible to
query data in an almost arbitrary fashion
efficiently.

Also proposals around JSON CRUD
functions.

20

Thanks!

5 Hlb\@bb\c\:jﬁ_
2 WX U

Questions!

