
Writeable CTEs
(the next big thing)

Copyright © 2009
David Fetter david.fetter@pgexperts.com
All Rights Reserved

mailto:david@fetter.org
mailto:david@fetter.org
http://www.pgexperts.com/
http://www.pgexperts.com/

Current CTEs
WITH [RECURSIVE] t1 [(column type,…)] AS
(
 [SELECT | VALUES]
[UNION [ALL]
 [SELECT]
),
t2 AS…tn AS…
SELECT…

Travelling Salesman Problem
Given a number of cities and the costs of travelling
from any city to any other city, what is the least-
cost round-trip route that visits each city exactly
once and then returns to the starting city?

OBTW

With CTE and Windowing, SQL is Turing Complete.

What Didn't the
Old Syntax Do?

WRITE!
WITH [RECURSIVE] t1 [(column type,…)] AS
(
 [SELECT | VALUES |
 (INSERT | UPDATE | DELETE) [RETURNING]]
[UNION [ALL]
 [SELECT | VALUES |
 (INSERT | UPDATE | DELETE) [RETURNING]]
)
(SELECT | INSERT | UPDATE | DELETE) …

For 8.5:
Simple Partition Management

CREATE TABLE log (
 ts TIMESTAMPTZ NOT NULL,
 msg TEXT
);

CREATE TABLE log_200901 ()
INHERITS(log);

ALTER TABLE log_200901 ADD
CONSTRAINT right_month CHECK(
 ts >= '2009-01-01' AND
 ts < '2009-02-01');

For 8.5:
Simple Partition Management

For 8.5:
Simple Partition Management

ishii@pgcon09j:54321=# WITH
t1 AS (
 DELETE FROM ONLY log
 WHERE ts >= '2009-01-01' AND ts < '2009-02-01'
 RETURNING *
),
INSERT INTO log_200901 SELECT * FROM t1;
INSERT 0 83240

What you'll be able to do:
WITH t AS (
 DELETE FROM ONLY log WHERE ts >= '2009-01-01'
 AND ts < '2009-02-01'
 RETURNING *)
INSERT INTO log_200901
SELECT * FROM t;

 QUERY PLAN

 Insert (cost=27.40..27.52 rows=83240 width=40)
 -> CTE Scan on t (cost=27.40..27.52 rows=83240 width=40)
 CTE t
 -> Delete (cost=0.00..27.40 rows=83240 width=6)
 -> Seq Scan on log (cost=0.00..27.40 rows=83240 width=6)
 Filter: (..)
(6 rows)

What you can do now:
Partition Management

ishii@pgcon09j:54321=# WITH
t1 AS (DELETE FROM ONLY log WHERE ts < '2009-02-01' RETURNING *),
t2 AS (INSERT INTO log_200901 SELECT * FROM t1)
SELECT min(ts), max(ts), count(*) FROM t1;
 min │ max │ count
───────────────── | ──────────────── | ────
 2009-01-01 00:00:01.6416-08 │ 2009-01-30 23:58:38.6976-08 │ 83240
(1 row)

Query Clustering:
I/O Minimization

CREATE TABLE person (
 id SERIAL PRIMARY KEY,
 first_name TEXT,
 last_name TEXT,
 CHECK (CASE WHEN first_name IS NULL THEN 0 ELSE 1 END +
 CASE WHEN last_name IS NULL THEN 0 ELSE 1 END >= 1)
 birthdate DATE NOT NULL,
 gender TEXT
);

Query Clustering:
I/O Minimization

CREATE TABLE im (
 id SERIAL PRIMARY KEY,
 provider TEXT NOT NULL, /* should be fk */
 handle TEXT NOT NULL
);

Query Clustering:
I/O Minimization

CREATE TABLE phone (
 id SERIAL PRIMARY KEY,
 country_code TEXT NOT NULL,
 phone_number TEXT NOT NULL,
 extension TEXT
);

Query Clustering:
I/O Minimization

CREATE TABLE street (
 id SERIAL PRIMARY KEY,
 street1 TEXT NOT NULL,
 street2 TEXT,
 street3 TEXT,
 city TEXT NOT NULL,
 state TEXT,
 country TEXT NOT NULL,
 post_code TEXT
);

Query Clustering:
I/O Minimization

CREATE TABLE person_im (
 person_id INTEGER NOT NULL REFERENCES person (id),
 im_id INTEGER NOT NULL REFERENCES im (id),
 UNIQUE (person_id, im_id)
);

CREATE TABLE person_phone (
 person_id INTEGER NOT NULL REFERENCES person (id),
 phone_id INTEGER NOT NULL REFERENCES phone (id),
 UNIQUE (person_id, phone_id)
);

CREATE TABLE person_street (
 person_id INTEGER NOT NULL REFERENCES person (id),
 street_id INTEGER NOT NULL REFERENCES street (id),
 UNIQUE (person_id, street_id)
);

Query Clustering:
I/O Minimization

WITH t_person AS (
 INSERT INTO person (first_name, last_name)
 VALUES ('David', 'Fetter')
 RETURNING id
),

Query Clustering:
I/O Minimization

t_im AS (
 INSERT INTO im (provider, handle)
 VALUES
 ('Yahoo!', 'dfetter'),
 ('AIM', 'dfetter666'),
 ('XMPP', 'david.fetter@gmail.com')
 RETURNING id
),
t_person_im AS (
 INSERT INTO person_im
 SELECT * FROM t_person CROSS JOIN t_im
),

mailto:david.fetter@gmail.com
mailto:david.fetter@gmail.com

Query Clustering:
I/O Minimization

t_phone (phone_id) AS (
 INSERT INTO phone (country_code, phone_number)
 VALUES
 ('+1','415 235 3778'),
 ('+1','510 893 6100')
 RETURNING id
),
t_person_phone AS (
 INSERT INTO person_phone
 SELECT * FROM t_person CROSS JOIN t_phone
),

Query Clustering:
I/O Minimization

t_street AS (
 INSERT INTO street (street1, city, state, country, post_code)
 VALUES
 ('2500B Magnolia Street', 'Oakland','California','USA','94607-2410'),
 ('2166 Hayes Street Suite 200', 'San Francisco','California','USA','94117')
),
t_person_street AS (
 INSERT INTO person_street
 SELECT * FROM t_person CROSS JOIN t_street
)

Query Clustering:
I/O Minimization

VALUES(true);

Query Clustering:
Transaction Management

CREATE TABLE foo (
 id SERIAL PRIMARY KEY,
 bar_id INTEGER NOT NULL
);

CREATE TABLE bar (
 id SERIAL PRIMARY KEY,
 foo_id INTEGER NOT NULL REFERENCES foo(id)
 ON DELETE CASCADE
 INITIALLY DEFERRED
);

ALTER TABLE foo ADD FOREIGN KEY (bar_id) REFERENCES bar(id)
 ON DELETE CASCADE
 INITIALLY DEFERRED;

Query Clustering:
Transaction Management

WITH t AS
(
	
 INSERT INTO foo(id, bar_id)
	
 VALUES(
	
 	
 DEFAULT,
	
 	
 nextval(pg_get_serial_sequence('bar', 'id'))
)
	
 RETURNING id AS foo_id, bar_id
)
INSERT INTO bar(id,foo_id)
SELECT bar_id, foo_id FROM t RETURNING *;

How'd He Do That?!?

First try: David digs into the grammar and gets cut
a few times.

How'd He Do That?!?

First try: Marko reworks the planner. It needs to
know when it creates a ModifyTable node. These used
to have another name.

How'd He Do That?!?

First try: Marko reworks the executor. It needs new
nodes. Mmmm...nodes.

How'd He Do That?!?

Marko reworks the executor, Part II:
Copy & Paste. Now it's getting ugly...

How'd He Do That?!?

Jaime Casanova, Tom Lane, and Robert Haas look at
the reworked executor.

D'oh!

How'd He Do That?!?

FAIL!
Way too much code copying from top
level to the new nodes.

How'd He Do That?!?

Planner changes for ModifyTable node (a few)

How'd He Do That?!?

Executor changes: ONE new node called ModifyTable

How'd He Do That?!?

Marko Tiikkaja restructures the whole code base for the
ModifyTable node. "The usual stuff," (he said casually) for

new nodes.

How'd He Do That?!?

WIN!

Next Steps

INSERT, UPDATE and DELETE on the top level.
RECURSIVE
Optimization

How'd He Do That?!?

Questions?
Comments?

ありがとう
Copyright © 2009
David Fetter david.fetter@pgexperts.com
All Rights Reserved

http://2009.pgday.eu/feedback

mailto:david@fetter.org
mailto:david@fetter.org
http://www.pgexperts.com/
http://www.pgexperts.com/
http://2009.pgday.eu/feedback
http://2009.pgday.eu/feedback

