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Causes of Database Corruption

Kernel or System Malfeasance

Faulty Hardware

PostgreSQL Bugs

Pilot Error



Faulty Hardware - Bad Memory

Far more common than you might think

A recent paper from Google analyzed statistics for tens of 
thousands of machines from multiple manufacturers over a 2.5 
year period. 

• 8% of DIMMS suffered a correctable error

• 25,000-75,000 FIT per MBit 
(5-15 failures per day per Gbyte)

• Annual incidence of uncorrectable errors was 
1.3% per machine and 0.22% per DIMM.

Bianca Schroeder et. al., SIGMETRICS/Performance '09 June 15-19, 2009



Kernel or System Malfeasance

● fsync that doesn't sync

• fsync which doesn't sync even after write caching is disabled
NFS, LVM, Raid controllers can defeat fsync.

• Snapshots that aren't consistent across volumes

• Filesystem Bugs

# hdparm -W 0 /dev/sda

/dev/sda:
 setting drive write-caching to 0 (off)
 write-caching =  0 (off)

# hdparm -W 0 /dev/sda

/dev/sda:
 setting drive write-caching to 0 (off)
 write-caching =  0 (off)



Pilot Error

• Setting fsync=off followed by a system crash or power failure

• Setting full_page_writes=off  (except in special cases e.g. ZFS)

• Taking hot backups without invoking pg_start_backup()

• Not waiting for pg_start_backup() to finish before beginning backup

• Failing to archive WAL files during the backup

• Recovering onto a machine with a different architecture

• Marking functions with inconsistent results IMMUTABLE

• Recovering onto machine with different collation ordering



PostgreSQL Bugs

Always use the most recent bug-fix release for the release you're using!

Just a brief sample of critical bugs fixed in these releases:

•  8.4.1: Fix problem that could make expired rows visible after a crash

•  8.3.8: Force WAL segment switch during pg_start_backup()
This avoids corner cases that could render a base backup unusable.

•  8.2.10: Recovery failed if the WAL ended partway through a btree split 
operation

•  8.1.10: Prevent index corruption when a transaction inserts rows and 
then aborts close to the end of a concurrent VACUUM on the same table

Minor releases do not require a dump/reload and do not introduce new 
features or behaviour. They only fix bugs. They can be installed in minutes 
by installing new binaries and restarting the database.
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Symptoms - "Can't Happen" Errors

ERROR: invalid page header in block 3527 of relation "foo"

ERROR:  could not access status of transaction 3221180546
DETAIL:  could not open file "pg_clog/0BFF": No such file or directory

ERROR:  missing chunk number 0 for toast value 25692661 in 
pg_toast_25497233

ERROR:  attempted to delete invisible tuple

ERROR:  could not read block 6 of relation 1663/35078/1761966: read 
only 0 of 8192 bytes
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● Data is stored in <PGDATA>/base/<databaseoid>/<relfilenode>

● Postgres page size is 8192 bytes by default

● Tables over 1GB are stored in 1GB files 
<relfilenode>      (contains blocks             0  - 131,071)
<relfilenode>.1   (contains blocks  131,072  - 262,143)
<relfilenode>.2   (contains blocks  262,144  - 393,215)

● etc.

● Pages (both heap and index) start with a page header which is 
checked when the page is loaded. It does not contain a checksum.

● Pages containing all-zeroes are considered “empty” by Postgres

● Postgres refers to tuple physical location by “ctid” which consists
of a page number and a “line pointer” within the page.
e.g. Tuple with ctid (3,10) is in page #3 and is tuple #10 on the page

Postgres Data File Storage



Postgres File System Layout

testdb=> select oid from pg_database where datname = 'testdb';
  oid  
-------
 16384
(1 row)

testdb=> select relfilenode from pg_class where relname = 'test1';
  oid  
-------
 16385
(1 row)

$ cd $PGDATA/base/16384   
$ ls -l 16385
-rw------- 1 postgres postgres 40960 Oct 16 12:13 16385



Postgres Heap Data Page Layout

Page Header

tuple 1tuple 2

tuple 4tuple 3

tuple 5tuple 6

tuple N

Used Space

Free Space

3 4 61 2 5 N

pd_upper

pd_lower

Page Consists of:

• Page Header

• Line Pointers

• Free Space

• Tuples

Tuples are stored starting from the end 
of the page moving toward the start.

Separate tuples for each version of row
  (e.g. Tuples 2,3,4,6 represent a series of
   updates to the same row)Diagram thanks to Pavan Deolasee  ©EnterpriseDB
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Example #1 – Completely corrupt page

testdb=> select count(*) from test1;
 count 
-------
   194
(1 row)

$ cd $PGDATA/base/16384

$ dd if=/dev/urandom bs=8192 obs=8192 of=16385 seek=3 count=1
1+0 records in
1+0 records out
8192 bytes (8.2 kB) copied, 0.0043717 s, 1.9 MB/s

testdb=> select count(*) from test1;
ERROR:  invalid page header in block 3 of relation base/16384/16385

testdb=> set zero_damaged_pages = true;
SET

testdb=> select count(*) from test1;
WARNING:  invalid page header in block 3 of relation base/16384/16385; zeroing out page
 count 
-------
   110
(1 row)



Example #2 – Partly corrupt block

$ dd if=/dev/urandom bs=512 obs=512 of=16385 seek=63 count=1
1+0 records in
1+0 records out
512 bytes (512 B) copied, 0.000327559 s, 1.6 MB/s

testdb=> select count(*) from test3;
ERROR:  could not access status of transaction 2341685826
DETAIL:  Could not open file "pg_clog/08B9": No such file or directory.

$ ls -l $PGDATA/pg_clog
total 8
-rw------- 1 stark eng 8192 Oct 16 19:42 0000

Transaction 2,341,685,826  is not a reasonable transaction id. This 
is a brand new database. The commit log info for transaction id 
2,341,685,826 (8B934A42) would be in pg_clog/08B9 but look at 
the actual files present in pg_clog for actual recent transactions:



testdb=> \set FETCH_COUNT 1
testdb=> select ctid  from test3;
 ctid  
-------
 (0,1)
 (0,2)
 (0,3)
 (0,4)
 (0,5)
 (0,6)
 (0,7)
 (0,8)
 (0,9)
  ...
 (0,38)
 (0,39)
 (1,1)
 (1,2)
 (1,3)
  ...
 (1,36)
 (2,1)
  ...
 (2,38)
ERROR:  could not access status of transaction 2341685826
DETAIL:  Could not open file "pg_clog/08B9": No such file or directory.

Example #2 – Partly corrupt block



Advanced Tools: pageinspect

testdb=# create table saved_data as select get_raw_page('test3',3) as raw_page;
SELECT

testdb=# \d saved_data
  Table "public.saved_data"
  Column  | Type  | Modifiers 
----------+-------+-----------
 raw_page | bytea | 

testdb=# select * from  heap_page_items(get_raw_page('test3',3));

 lp | lp_off | lp_flags | lp_len |   t_xmin   |   t_xmax   |  t_field3   |       t_ctid       | t_infomask2 | t_infomask | t_hoff | t_bits ...
----+--------+----------+--------+------------+------------+-------------+--------------------+-------------+------------+--------+--------...
  1 |   7724 |        1 |    468 | 3632287242 | 2301944639 | -1953281470 | (3182014523,17515) |        3444 |     -25513 |    183 | 100111 ...
  2 |   7292 |        1 |    432 |        666 |          0 |           0 | (3,2)              |          16 |       2307 |     28 | 110111 ...
  3 |   7132 |        1 |    160 |        666 |          0 |           0 | (3,3)              |          16 |       2307 |     28 | 110110 ...
  4 |   6968 |        1 |    162 |        666 |          0 |           0 | (3,4)              |          16 |       2307 |     28 | 110110 ...
  5 |   6776 |        1 |    191 |        666 |          0 |           0 | (3,5)              |          16 |       2307 |     28 | 111110 ...
  6 |   6580 |        1 |    195 |        666 |          0 |           0 | (3,6)              |          16 |       2307 |     28 | 111110 ...
  7 |   6372 |        1 |    205 |        666 |          0 |           0 | (3,7)              |          16 |       2307 |     28 | 110110 ...
  8 |   6204 |        1 |    167 |        666 |          0 |           0 | (3,8)              |          16 |       2307 |     28 | 110110 ...
  9 |   5936 |        1 |    267 |        666 |          0 |           0 | (3,9)              |          16 |       2307 |     28 | 111111 ...

 ...

 30 |   1548 |        1 |    196 |        666 |          0 |           0 | (3,30)             |          16 |       2307 |     28 | 110110 ...
 31 |   1344 |        1 |    201 |        666 |          0 |           0 | (3,31)             |          16 |       2307 |     28 | 110110 ...
 32 |   1216 |        1 |    126 |        666 |          0 |           0 | (3,32)             |          16 |       2307 |     28 | 110110 ...
 33 |   1056 |        1 |    158 |        666 |          0 |           0 | (3,33)             |          16 |       2307 |     28 | 111110 ...
 34 |    792 |        1 |    262 |        666 |          0 |           0 | (3,34)             |          16 |       2307 |     28 | 110110 ...
 35 |    552 |        1 |    240 |        666 |          0 |           0 | (3,35)             |          16 |       2307 |     28 | 111110 ...
 36 |    388 |        1 |    163 |        666 |          0 |           0 | (3,36)             |          16 |       2307 |     28 | 110110 ...
(36 rows)



Extracting Specific Rows Using ctid

testdb=> select * from test3 where ctid = '(3,1)';
ERROR:  could not access status of transaction 2341685826
DETAIL:  Could not open file "pg_clog/08B9": No such file or directory.

testdb=> select * from test3 where ctid = '(3,2)';
server closed the connection unexpectedly

This probably means the server terminated abnormally
before or while processing the request.

The connection to the server was lost. Attempting reset: Succeeded.

testdb=> select * from test3 where ctid = '(3,3)';
       name       | setting | unit |        category         |               short_desc         ...
------------------+---------+------+-------------------------+--------------------------------- ...
 log_parser_stats | off     |      | Statistics / Monitoring | Writes parser performance statis ...
(1 row)

testdb=> select * from test3 where ctid = '(3,4)';
       name        | setting | unit |        category         |                short_desc       ...
-------------------+---------+------+-------------------------+-------------------------------- ...
 log_planner_stats | off     |      | Statistics / Monitoring | Writes planner performance stat ...
(1 row)

...

...



Manually Zeroing Bad Block
testdb=> select oid from pg_database where datname = 'testdb';
  oid  
-------
 16384
(1 row)

testdb=> select relfilenode from pg_class where relname = 'test1';
  oid  
-------
 16385
(1 row)

LOG:  shutting down
LOG:  database system is shut down

$ dd if=/dev/zero of=/var/tmp/corrupt1/base/16384/16385 bs=8192 seek=3 count=1
1+0 records in
1+0 records out
8192 bytes (8.2 kB) copied, 0.000105741 s, 77.5 MB/s

LOG:  database system was shut down at 2009-10-20 02:07:30 GMT
LOG:  database system is ready to accept connections

testdb=# select count(*) from test3;
 count 
-------
   110



Thank You
Questions?


