Forensic Analysis of Corrupted
Go 8[(3 PostgreSQL Databases

When stuff really hits the fan

Presenter
Gregory Stark

Agenda Google

@ Causes of Database Corruption
How to stay out of trouble

@® Symptoms to Watch For
How to recognize when you're in trouble

@® PostgreSQL Data Storage
Where to find your data

What to do when you're in trouble

Agenda Google

@ Causes of Database Corruption
How to stay out of trouble

@® Symptoms to Watch For
How to recognize when you're in trouble

@® PostgreSQL Data Storage
Where to find your data

What to do when you're in trouble

Causes of Database Corruption Google

@® Faulty Hardware

@® Kernel or System Malfeasance
@ Pilot Error

@® PostgreSQL Bugs

Faulty Hardware - Bad Memory Google

Far more common than you might think

A recent paper from Google analyzed statistics for tens of
thousands of machines from multiple manufacturers over a 2.5

year period.

* 8% of DIMMS suffered a correctable error

« 25,000-75,000 FIT per MBIt
(5-15 failures per day per Gbyte)

* Annual incidence of uncorrectable errors was
1.3% per machine and 0.22% per DIMM.

Kernel or System Malfeasance Google

* fsync that doesn't sync
hdparm -W 0 /dev/sda

/dev/sda:
setting drive write-caching to 0 (off)
write-caching = 0 (off)

* fsync which doesn't sync even after write caching is disabled
NFS, LVM, Raid controllers can defeat fsync.

* Snapshots that aren't consistent across volumes

* Filesystem Bugs

Pilot Error Google

* Setting fsync=off followed by a system crash or power failure

* Setting full page writes=off (exceptin special cases e.g. ZFS)

* Taking hot backups without invoking pg start backup ()

* Not waiting for pg start backup () to finish before beginning backup
* Failing to archive WAL files during the backup

* Recovering onto a machine with a different architecture

* Marking functions with inconsistent results IMMUTABLE

* Recovering onto machine with different collation ordering

PostgreSQL Bugs Google

Always use the most recent bug-fix release for the release you're using!
Just a brief sample of critical bugs fixed in these releases:
* 8.4.1: Fix problem that could make expired rows visible after a crash

* 8.3.8: Force WAL segment switch during pg_start_backup()
This avoids corner cases that could render a base backup unusable.

* 8.2.10: Recovery failed if the WAL ended partway through a btree split
operation

* 8.1.10: Prevent index corruption when a transaction inserts rows and
then aborts close to the end of a concurrent VACUUM on the same table

Minor releases do not require a dump/reload and do not introduce new
features or behaviour. They only fix bugs. They can be installed in minutes
by installing new binaries and restarting the database.

Agenda Google

@ Causes of Database Corruption
How to stay out of trouble

@® Symptoms to Watch For
How to recognize when you're in trouble

@® PostgreSQL Data Storage
Where to find your data

What to do when you're in trouble

Symptoms - Anything Can Happen! Google

® Random Crashes

@® Data in Database Silently Modified

@® Inconsistent Query Results

® "Can't Happen" Errors

Symptoms - Anything Can Happen! Google

® Random Crashes

@® Data in Database Silently Modified

@® Inconsistent Query Results

® "Can't Happen" Errors

Symptoms - Anything Can Happen! Google

® Random Crashes

@® Data in Database Silently Modified

@® Inconsistent Query Results

® "Can't Happen" Errors

Symptoms - Anything Can Happen! Google

® Random Crashes

@® Data in Database Silently Modified

@® Inconsistent Query Results

® "Can't Happen" Errors

Symptoms - Anything Can Happen! Google

® Random Crashes

@® Data in Database Silently Modified

@® Inconsistent Query Results

@® "'Can't Happen" Errors

Symptoms - “"Can’t Happen" Errors Google

ERROR: invalid page header in block 3527 of relation "foo"

ERROR: could not access status of transaction 3221180546
DETAIL: could not open file "pg_clog/OBFF": No such file or directory

ERROR: missing chunk number 0 for toast value 25692661 in
pg_toast 25497233

ERROR: attempted to delete invisible tuple

ERROR: could not read block 6 of relation 1663/35078/1761966: read
only 0 of 8192 bytes

Agenda Google

@ Causes of Database Corruption
How to stay out of trouble

@® Symptoms to Watch For
How to recognize when you're in trouble

@® PostgreSQL Data Storage
Where to find your data

What to do when you're in trouble

Postgres Data File Storage Google

Data is stored in <PGDATA>/base/<databaseoid>/<relfilenode>

Postgres page size is 8192 bytes by default

Tables over 1GB are stored in 1GB files
<relfilenode> (contains blocks 0 -131,071)
<relfilenode>.1 (contains blocks 131,072 - 262,143)
<relfilenode>.2 (contains blocks 262,144 - 393,215)
* efc.

Pages (both heap and index) start with a page header which is
checked when the page is loaded. It does not contain a checksum.

Pages containing all-zeroes are considered “empty” by Postgres

Postgres refers to tuple physical location by “ctid” which consists
of a page number and a “line pointer” within the page.
e.g. Tuple with ctid (3,10) is in page #3 and is tuple #10 on the page

Postgres File System Layout Google

testdb=> select oid from pg database where datname = 'testdb';
oid

oid

$ cd $PGDATA/base/16384
$ 1s -1 16385
-rw------- 1 postgres postgres 40960 Oct 16 12:13 16385

Postgres Heap Data Page Layout Google

Page Header
| B K B
pd_upper Free Space

Used Space

tuple 6

M[JEJ

tuple 4

Diagram thanks to Pavan Deolasee ©EnterpriseDB

Page Consists of:
* Page Header

* Line Pointers

* Free Space

* Tuples

Tuples are stored starting from the end
of the page moving toward the start.

Separate tuples for each version of row
(e.g. Tuples 2,3,4,6 represent a series of
updates to the same row)

Google Confidential and Proprietary

Agenda Google

@ Causes of Database Corruption
How to stay out of trouble

@® Symptoms to Watch For
How to recognize when you're in trouble

@® PostgreSQL Data Storage
Where to find your data

What to do when you're in trouble

Example #1 — Completely corrupt page Google

testdb=> select count(*) from testl;
count

$ cd $PGDATA/base/16384

$ dd if=/dev/urandom bs=8192 obs=8192 of=16385 seek=3 count=1
1+0 records in

1+0 records out

8192 bytes (8.2 kB) copied, 0.0043717 s, 1.9 MB/s

testdb=> select count(*) from testl;
ERROR: invalid page header in block 3 of relation base/16384/16385

testdb=> set zero damaged pages = true;
SET

testdb=> select count(*) from testl;
WARNING: invalid page header in block 3 of relation base/16384/16385; zeroing out page
count

Example #2 — Partly corrupt block Google

$ dd if=/dev/urandom bs=512 obs=512 o0f=16385 seek=63 count=1l

140 records in

1+0 records out
512 bytes (512 B) copied, 0.000327559 s, 1.6 MB/s

testdb=> select count(*) from test3;
ERROR: could not access status of transaction 2341685826

DETAIL: Could not open file "pg clog/08B9": No such file or directory.

Transaction 2,341,685,826 is not a reasonable transaction id. This
is a brand new database. The commit log info for transaction id
2,341,685,826 (8B934A42) would be in pg_clog/08B9 but look at
the actual files present in pg_clog for actual recent transactions:

$ 1ls -1 SPGDATA/pg _clog

total 8
-rw--—-—-—--—- 1 stark eng 8192 Oct 16 19:42 0000

Example #2 — Partly corrupt block Google

testdb=> \set FETCH COUNT 1
testdb=> select ctid from test3;
ctid

(2,38)
ERROR: could not access status of transaction 2341685826
DETAIL: Could not open file "pg clog/08B9": No such file or directory.

Advanced Tools: pageinspect Google

testdb=# create table saved data as select get raw page('test3',63) as raw page;
SELECT

testdb=# \d saved data
Table "public.saved data"
Column | Type | Modifiers

raw_page | bytea |

testdb=# select * from heap page items(get raw page('test3',3));

lp | 1p_off | 1p flags | 1lp_len | t xmin | t xmax | t_field3 | t ctid | t_infomask2 | t_infomask | t hoff | t_bits
-————t-—-————— - +-—-—-————- +--—-———— +--—-————— - +--—-—-———————— +--—-————————— +--—-———— - +--—-————- .
1| 7724 | 1| 468 | 3632287242 | 2301944639 | -1953281470 | (3182014523,17515) | 3444 | -25513 | 183 | 100111 ...
2 | 7292 | 1] 432 | 666 | 0 | 0| (3,2) | 16 | 2307 | 28 | 110111 ...
3 | 7132 | 1] 160 | 666 | 0 | 0| (3,3) | 16 | 2307 | 28 | 110110 ...
4 | 6968 | 1] 162 | 666 | 0 | 0| (3,4) | 16 | 2307 | 28 | 110110 ...
5 | 6776 | 1] 191 | 666 | 0 | 0| (3,5) | 16 | 2307 | 28 | 111110 ...
6 | 6580 | 1] 195 | 666 | 0 | 0| (3,6) | 16 | 2307 | 28 | 111110 ...
7 | 6372 | 1] 205 | 666 | 0 | 0| (3,7) | 16 | 2307 | 28 | 110110 ...
8 | 6204 | 1] 167 | 666 | 0 | 0| (3,8) | 16 | 2307 | 28 | 110110 ...
9 | 5936 | 1] 267 | 666 | 0 | 0] (3,9 | 16 | 2307 | 28 | 111111 ...
30 | 1548 | 1 196 | 666 | 0 | 0 | (3,30) | 16 | 2307 | 28 | 110110 ...
31 | 1344 | 1| 201 | 666 | 0 | 0 | (3,31) | 16 | 2307 | 28 | 110110 ...
32 | 1216 | 1| 126 | 666 | 0 | 0 | (3,32) | 16 | 2307 | 28 | 110110 ...
33 | 1056 | 1 158 | 666 | 0 | 0 | (3,33) | 16 | 2307 | 28 | 111110 ...
34 | 792 | 1 262 | 666 | 0 | 0 | (3,34) | 16 | 2307 | 28 | 110110 ...
35 | 552 | 1 240 | 666 | 0 | 0 | (3,35) | 16 | 2307 | 28 | 111110 ...
36 | 388 | 1 163 | 666 | 0 | 0 | (3,36) | 16 | 2307 | 28 | 110110 ...

(36 rows)

Extracting Specific Rows Using ctid Google

testdb=> select * from test3 where ctid = '(3,1)"';
ERROR: could not access status of transaction 2341685826
DETAIL: Could not open file "pg clog/08B9": No such file or directory.

testdb=> select * from test3 where ctid = '(3,2)"';

server closed the connection unexpectedly
This probably means the server terminated abnormally
before or while processing the request.

The connection to the server was lost. Attempting reset: Succeeded.

testdb=> select * from test3 where ctid = '(3,3)"';

name | setting | unit | category | short_desc
—————————————————— e T e e
log_parser_stats | off | | Statistics / Monitoring | Writes parser performance statis
(1 row)
testdb=> select * from test3 where ctid = '(3,4)"';

name | setting | unit | category | short_desc
——————————————————— e s A
log_planner_stats | off | | Statistics / Monitoring | Writes planner performance stat

(1 row)

Manually Zeroing Bad Block Google

testdb=> select oid from pg database where datname = 'testdb';
oid

oid

LOG: shutting down
LOG: database system is shut down

$ dd if=/dev/zero of=/var/tmp/corruptl/base/16384/16385 bs=8192 seek=3 count=1l
140 records in

140 records out

8192 bytes (8.2 kB) copied, 0.000105741 s, 77.5 MB/s

LOG: database system was shut down at 2009-10-20 02:07:30 GMT
LOG: database system is ready to accept connections

testdb=# select count(*) from test3;
count

Thank You

i Questions?

