
Forensic Analysis of Corrupted
PostgreSQL Databases

Presenter
Gregory Stark

When stuff really hits the fan

Agenda

PostgreSQL Data Storage
 Where to find your data

Causes of Database Corruption
 How to stay out of trouble

Examples
 What to do when you're in trouble

Symptoms to Watch For
 How to recognize when you're in trouble

Agenda

PostgreSQL Data Storage
 Where to find your data

Causes of Database Corruption
 How to stay out of trouble

Examples
 What to do when you're in trouble

Symptoms to Watch For
 How to recognize when you're in trouble

Causes of Database Corruption

Kernel or System Malfeasance

Faulty Hardware

PostgreSQL Bugs

Pilot Error

Faulty Hardware - Bad Memory

Far more common than you might think

A recent paper from Google analyzed statistics for tens of
thousands of machines from multiple manufacturers over a 2.5
year period.

• 8% of DIMMS suffered a correctable error

• 25,000-75,000 FIT per MBit
(5-15 failures per day per Gbyte)

• Annual incidence of uncorrectable errors was
1.3% per machine and 0.22% per DIMM.

Bianca Schroeder et. al., SIGMETRICS/Performance '09 June 15-19, 2009

Kernel or System Malfeasance

● fsync that doesn't sync

• fsync which doesn't sync even after write caching is disabled
NFS, LVM, Raid controllers can defeat fsync.

• Snapshots that aren't consistent across volumes

• Filesystem Bugs

hdparm -W 0 /dev/sda

/dev/sda:
 setting drive write-caching to 0 (off)
 write-caching = 0 (off)

hdparm -W 0 /dev/sda

/dev/sda:
 setting drive write-caching to 0 (off)
 write-caching = 0 (off)

Pilot Error

• Setting fsync=off followed by a system crash or power failure

• Setting full_page_writes=off (except in special cases e.g. ZFS)

• Taking hot backups without invoking pg_start_backup()

• Not waiting for pg_start_backup() to finish before beginning backup

• Failing to archive WAL files during the backup

• Recovering onto a machine with a different architecture

• Marking functions with inconsistent results IMMUTABLE

• Recovering onto machine with different collation ordering

PostgreSQL Bugs

Always use the most recent bug-fix release for the release you're using!

Just a brief sample of critical bugs fixed in these releases:

• 8.4.1: Fix problem that could make expired rows visible after a crash

• 8.3.8: Force WAL segment switch during pg_start_backup()
This avoids corner cases that could render a base backup unusable.

• 8.2.10: Recovery failed if the WAL ended partway through a btree split
operation

• 8.1.10: Prevent index corruption when a transaction inserts rows and
then aborts close to the end of a concurrent VACUUM on the same table

Minor releases do not require a dump/reload and do not introduce new
features or behaviour. They only fix bugs. They can be installed in minutes
by installing new binaries and restarting the database.

Agenda

PostgreSQL Data Storage
 Where to find your data

Causes of Database Corruption
 How to stay out of trouble

Examples
 What to do when you're in trouble

Symptoms to Watch For
 How to recognize when you're in trouble

Symptoms - Anything Can Happen!

Data in Database Silently Modified

Random Crashes

"Can't Happen" Errors

Inconsistent Query Results

Symptoms - Anything Can Happen!

Data in Database Silently Modified

Random Crashes

"Can't Happen" Errors

Inconsistent Query Results

Symptoms - Anything Can Happen!

Data in Database Silently Modified

Random Crashes

"Can't Happen" Errors

Inconsistent Query Results

Symptoms - Anything Can Happen!

Data in Database Silently Modified

Random Crashes

"Can't Happen" Errors

Inconsistent Query Results

Symptoms - Anything Can Happen!

Data in Database Silently Modified

Random Crashes

"Can't Happen" Errors

Inconsistent Query Results

Symptoms - "Can't Happen" Errors

ERROR: invalid page header in block 3527 of relation "foo"

ERROR: could not access status of transaction 3221180546
DETAIL: could not open file "pg_clog/0BFF": No such file or directory

ERROR: missing chunk number 0 for toast value 25692661 in
pg_toast_25497233

ERROR: attempted to delete invisible tuple

ERROR: could not read block 6 of relation 1663/35078/1761966: read
only 0 of 8192 bytes

Agenda

PostgreSQL Data Storage
 Where to find your data

Causes of Database Corruption
 How to stay out of trouble

Examples
 What to do when you're in trouble

Symptoms to Watch For
 How to recognize when you're in trouble

● Data is stored in <PGDATA>/base/<databaseoid>/<relfilenode>

● Postgres page size is 8192 bytes by default

● Tables over 1GB are stored in 1GB files
<relfilenode> (contains blocks 0 - 131,071)
<relfilenode>.1 (contains blocks 131,072 - 262,143)
<relfilenode>.2 (contains blocks 262,144 - 393,215)

● etc.

● Pages (both heap and index) start with a page header which is
checked when the page is loaded. It does not contain a checksum.

● Pages containing all-zeroes are considered “empty” by Postgres

● Postgres refers to tuple physical location by “ctid” which consists
of a page number and a “line pointer” within the page.
e.g. Tuple with ctid (3,10) is in page #3 and is tuple #10 on the page

Postgres Data File Storage

Postgres File System Layout

testdb=> select oid from pg_database where datname = 'testdb';
 oid

 16384
(1 row)

testdb=> select relfilenode from pg_class where relname = 'test1';
 oid

 16385
(1 row)

$ cd $PGDATA/base/16384
$ ls -l 16385
-rw------- 1 postgres postgres 40960 Oct 16 12:13 16385

Postgres Heap Data Page Layout

Page Header

tuple 1tuple 2

tuple 4tuple 3

tuple 5tuple 6

tuple N

Used Space

Free Space

3 4 61 2 5 N

pd_upper

pd_lower

Page Consists of:

• Page Header

• Line Pointers

• Free Space

• Tuples

Tuples are stored starting from the end
of the page moving toward the start.

Separate tuples for each version of row
 (e.g. Tuples 2,3,4,6 represent a series of
 updates to the same row)Diagram thanks to Pavan Deolasee ©EnterpriseDB

Agenda

PostgreSQL Data Storage
 Where to find your data

Causes of Database Corruption
 How to stay out of trouble

Examples
 What to do when you're in trouble

Symptoms to Watch For
 How to recognize when you're in trouble

Example #1 – Completely corrupt page

testdb=> select count(*) from test1;
 count

 194
(1 row)

$ cd $PGDATA/base/16384

$ dd if=/dev/urandom bs=8192 obs=8192 of=16385 seek=3 count=1
1+0 records in
1+0 records out
8192 bytes (8.2 kB) copied, 0.0043717 s, 1.9 MB/s

testdb=> select count(*) from test1;
ERROR: invalid page header in block 3 of relation base/16384/16385

testdb=> set zero_damaged_pages = true;
SET

testdb=> select count(*) from test1;
WARNING: invalid page header in block 3 of relation base/16384/16385; zeroing out page
 count

 110
(1 row)

Example #2 – Partly corrupt block

$ dd if=/dev/urandom bs=512 obs=512 of=16385 seek=63 count=1
1+0 records in
1+0 records out
512 bytes (512 B) copied, 0.000327559 s, 1.6 MB/s

testdb=> select count(*) from test3;
ERROR: could not access status of transaction 2341685826
DETAIL: Could not open file "pg_clog/08B9": No such file or directory.

$ ls -l $PGDATA/pg_clog
total 8
-rw------- 1 stark eng 8192 Oct 16 19:42 0000

Transaction 2,341,685,826 is not a reasonable transaction id. This
is a brand new database. The commit log info for transaction id
2,341,685,826 (8B934A42) would be in pg_clog/08B9 but look at
the actual files present in pg_clog for actual recent transactions:

testdb=> \set FETCH_COUNT 1
testdb=> select ctid from test3;
 ctid

 (0,1)
 (0,2)
 (0,3)
 (0,4)
 (0,5)
 (0,6)
 (0,7)
 (0,8)
 (0,9)
 ...
 (0,38)
 (0,39)
 (1,1)
 (1,2)
 (1,3)
 ...
 (1,36)
 (2,1)
 ...
 (2,38)
ERROR: could not access status of transaction 2341685826
DETAIL: Could not open file "pg_clog/08B9": No such file or directory.

Example #2 – Partly corrupt block

Advanced Tools: pageinspect

testdb=# create table saved_data as select get_raw_page('test3',3) as raw_page;
SELECT

testdb=# \d saved_data
 Table "public.saved_data"
 Column | Type | Modifiers
----------+-------+-----------
 raw_page | bytea |

testdb=# select * from heap_page_items(get_raw_page('test3',3));

 lp | lp_off | lp_flags | lp_len | t_xmin | t_xmax | t_field3 | t_ctid | t_infomask2 | t_infomask | t_hoff | t_bits ...
----+--------+----------+--------+------------+------------+-------------+--------------------+-------------+------------+--------+--------...
 1 | 7724 | 1 | 468 | 3632287242 | 2301944639 | -1953281470 | (3182014523,17515) | 3444 | -25513 | 183 | 100111 ...
 2 | 7292 | 1 | 432 | 666 | 0 | 0 | (3,2) | 16 | 2307 | 28 | 110111 ...
 3 | 7132 | 1 | 160 | 666 | 0 | 0 | (3,3) | 16 | 2307 | 28 | 110110 ...
 4 | 6968 | 1 | 162 | 666 | 0 | 0 | (3,4) | 16 | 2307 | 28 | 110110 ...
 5 | 6776 | 1 | 191 | 666 | 0 | 0 | (3,5) | 16 | 2307 | 28 | 111110 ...
 6 | 6580 | 1 | 195 | 666 | 0 | 0 | (3,6) | 16 | 2307 | 28 | 111110 ...
 7 | 6372 | 1 | 205 | 666 | 0 | 0 | (3,7) | 16 | 2307 | 28 | 110110 ...
 8 | 6204 | 1 | 167 | 666 | 0 | 0 | (3,8) | 16 | 2307 | 28 | 110110 ...
 9 | 5936 | 1 | 267 | 666 | 0 | 0 | (3,9) | 16 | 2307 | 28 | 111111 ...

 ...

 30 | 1548 | 1 | 196 | 666 | 0 | 0 | (3,30) | 16 | 2307 | 28 | 110110 ...
 31 | 1344 | 1 | 201 | 666 | 0 | 0 | (3,31) | 16 | 2307 | 28 | 110110 ...
 32 | 1216 | 1 | 126 | 666 | 0 | 0 | (3,32) | 16 | 2307 | 28 | 110110 ...
 33 | 1056 | 1 | 158 | 666 | 0 | 0 | (3,33) | 16 | 2307 | 28 | 111110 ...
 34 | 792 | 1 | 262 | 666 | 0 | 0 | (3,34) | 16 | 2307 | 28 | 110110 ...
 35 | 552 | 1 | 240 | 666 | 0 | 0 | (3,35) | 16 | 2307 | 28 | 111110 ...
 36 | 388 | 1 | 163 | 666 | 0 | 0 | (3,36) | 16 | 2307 | 28 | 110110 ...
(36 rows)

Extracting Specific Rows Using ctid

testdb=> select * from test3 where ctid = '(3,1)';
ERROR: could not access status of transaction 2341685826
DETAIL: Could not open file "pg_clog/08B9": No such file or directory.

testdb=> select * from test3 where ctid = '(3,2)';
server closed the connection unexpectedly

This probably means the server terminated abnormally
before or while processing the request.

The connection to the server was lost. Attempting reset: Succeeded.

testdb=> select * from test3 where ctid = '(3,3)';
 name | setting | unit | category | short_desc ...
------------------+---------+------+-------------------------+--------------------------------- ...
 log_parser_stats | off | | Statistics / Monitoring | Writes parser performance statis ...
(1 row)

testdb=> select * from test3 where ctid = '(3,4)';
 name | setting | unit | category | short_desc ...
-------------------+---------+------+-------------------------+-------------------------------- ...
 log_planner_stats | off | | Statistics / Monitoring | Writes planner performance stat ...
(1 row)

...

...

Manually Zeroing Bad Block
testdb=> select oid from pg_database where datname = 'testdb';
 oid

 16384
(1 row)

testdb=> select relfilenode from pg_class where relname = 'test1';
 oid

 16385
(1 row)

LOG: shutting down
LOG: database system is shut down

$ dd if=/dev/zero of=/var/tmp/corrupt1/base/16384/16385 bs=8192 seek=3 count=1
1+0 records in
1+0 records out
8192 bytes (8.2 kB) copied, 0.000105741 s, 77.5 MB/s

LOG: database system was shut down at 2009-10-20 02:07:30 GMT
LOG: database system is ready to accept connections

testdb=# select count(*) from test3;
 count

 110

Thank You
Questions?

