Streaming Replication

&

Hot Standby

Streaming Replication

Why Streaming Replication & Hot Standby?

High Availability Load Balancing

Schedule

1. Talk: Streaming Replication

2. Talk: Hot Standby

3. Demo

Streaming Replication

Masao Fujii NTT OSS Center

Copyright(c)2009 NTT, Inc. All Rights Reserved.

Fujii Masao

- Database engineer at NTT OSS Center
- Support and consulting
- Implementing Streaming Replication

History

Historical policy

• Avoid putting replication into core Postgres

• No "one size fits all" replication solution

Replication War!?

PL/Prox	, rubyrep		
Postgres-2	DBmirror		
Cybercluste	warm-standby Slony-l		
PGCluster-II	syncreplicator		
Postgres-R	Mammoth		
	Londiste		
pgpool Sequoi	Bucardo		
pgpool-II PyR	eplica twin RepDB		
GridSQL PGCluster	PostgresForest		

No default choice

- Too complex to use for simple cases
- vs. other dbms

Proposal of built-in replication

• by NTT OSSC @ PGCon 2008 Ottawa

Core team statement

 It is time to include a Simple, reliable basic replication feature in the COPE system

• NOT replace the existing projects

Features

Master - Slaves

Record-based log shipping

No migration required

Per database cluster granularity

Shared nothing

Synchronization modes

- recv
- fsync
- apply

recv mode

Synchronization mode

modes	Master	Slave			
	fsync	recv	fsync	apply	fast
async	~				
recv		~			
fsync	~	~	~		
apply	~	~		~	durable

My favorite mode

Fail Over

Split

Online Re-sync

Built-in

• Easy to install and use

• *Highly active community*

Hot Standby

Simon Riggs 2nd Quadrant

simon@2ndQuadrant.com

Hot Standby

Hot Standby Overview

- Allows users to connect in read-only mode
 - Allowed: SELECT, SET, LOAD, COMMIT/ROLLBACK
 - Disallowed: INSERT, UPDATE, DELETE, CREATE, 2PC,
 - SELECT ... FOR SHARE/UPDATE, nextval(), LOCK
 - No admin commands: ANALYZE, VACUUM, REINDEX, GRANT
- Simple configuration
 - recovery_connections = on # default on
- Performance Overhead
 - Master: <0.1% overhead from additional WAL
 - Standby: 2% CPU overhead
- Queries continue running when exit recovery

Hot Standby Query Conflicts

- Master: Connections can interfere and deadlock
- Standby: Queries can conflict with recovery
 - Recovery always wins
- Causes of conflicts
 - Cleanup records (HOT, VACUUM)
 - Btree cleanup records are a problem!
 - DROP DATABASE, DROP TABLESPACE
- Conflict resolution
 - Wait, then Cancel set with max_standby_delay

How does it work?

- Read-only transactions forced
- Snapshot data emulated on standby
 - Minimal information inferred from WAL
- Locks held only for AccessExclusiveLocks
- Cache invalidations
- Careful analysis of conflicts

Project Deliverables

- Virtual Transactions (8.3) (Florian/Tom)
- Atomic Subtransactions (8.4) (Simon)
- Database consistent state (8.4) (Simon/Heikki)
- Bgwriter active during recovery (8.4) (Simon/Heikki)
- Removal of DB/Auth Flat File (8.5) (Tom)
- Main Hot Standby patch (8.5) (Simon/Heikki)
- Removal of Non-Transactional Cache Inval (Tom!)
- Advanced PITR functions (8.5) (Simon)

Project Overview

- *Touches ~80 files, >10,000 lines*
- Effort
 - Analysis & Dev ~7 man months from Simon
 - Testing by 5 staff in 2ndQuadrant, led by Gianni Ciolli
 - Lengthy review by Heikki Linnakangas
- Changes
 - Around 50% of bugs found by code inspection
 - > 50 changes and enhancements as a result of refactoring, review and discussion

Demo

Scenario

• Configuration

• Checking of basic features

• Failover

\$HOME

- master
- *archive_master*
- slave
- *____ archive_slave*

- -- \$PGDATA
- -- archival area
- -- \$PGDATA
- -- archival area

1. Create the initial database cluster in the master as usual

\$ initdb -D master --locale=C --encoding=UTF8

2. Enable XLOG archiving

\$ mkdir archive_master
\$ emacs master/postgresql.conf
archive_mode = on
archive_command = 'cp %p ../archive_master/%f'

3. Set the maximum number of concurrent connections from the slaves

\$ emacs master/postgresql.conf
max_wal_senders = 5

4. Set up connections and authentication

\$ emacs master/postgresql.conf
listen_addresses = '192.168.0.99'

\$ emacs master/pg_hba.conf host replication postgres 192.168.0.99/32 trust

5. Start postgres on the master

\$ pg_ctI -D master start

6. Make a base backup, load it onto the slave

\$ psql -p5432 -c"SELECT pg_start_backup('demo', true)" \$ cp -r master slave \$ psql -p5432 -c"SELECT pg_stop_backup()"

7. Change the slave's configuration

\$ rm slave/postmaster.pid
\$ mkdir archive_slave
\$ emacs slave/postgresql.conf
port = 9999
archive_command = 'cp %p ../archive_slave/%f'

8. Create a recovery.conf in the slave

\$ emacs slave/recovery.conf
standby_mode = 'on'
primary_conninfo = 'host=192.168.0.99 port=5432
user=postgres'
trigger_file = '../trigger'

9. Start postgres on the slave

\$ pg_ctI -D slave start

Checking of basic features

- Session1 on slave
 \$ psql -p9999
 =# SELECT count(*) FROM demo;
 //read queries can be executed on slave
 =# INSERT INTO demo VALUES (9999);
 //error occurs: write queries cannot be executed on slave

Correct handling of snapshots

- Session1 on slave
 =# BEGIN;
 =# SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
 //cannot see the transaction which starts after this
 =# SELECT count(*) FROM demo;
- Session1 on master
 =# INSERT INTO demo VALUES(generate_series(1, 100));
- Session 2 on slave
 =# SELECT count(*) FROM demo;
 //result=200, the recent insertion is visible

Lock propagation

- Session1 on master

 # BEGIN;
 # LOCK TABLE demo;
 # SELECT pg_switch_xlog();
 //required to ship the WAL of "LOCK TABLE" to slave
- Session1 on slave
 =# SELECT count(*) FROM demo;
 //sleep until "LOCK TABLE" is committed on master
- Sessionn2 on slave
 =# SELECT current_query, waiting FROM pg_stat_activity;
 //shows query waiting
- Session1 on master #= COMMIT; //the waiting query gets up

Failover

- Let's see the query is still running when failover completes
- Session1 on slave
 =# SELECT pg_sleep(20);
- *Kill the master's postmaster \$ pg_ctl -D master -mi stop*
- Bring the slave up
 \$ touch trigger
 \$ psql -p9999
 #= SELECT current_query FROM pg_stat_activity;
 //can see pg_sleep is still running
 #= INSERT INTO demo VALUES(9999);
 //write queries can be executed because slave becomes master

Ending

Road to v8.5

• Needs your help

2ndQuadrant +

Professional PostgreSQL

