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Why Streaming Replication & Hot Standby?
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Fujii Masao

® Database engineer at NTT OSS Center
® Support and consulting

® Implementing Streaming Replication



History



Historical policy

® Avoid putting replication into core Postgres

® No "one size fits all" replication solution



Replication War!?
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No default choice

® Too complex to use for simple cases

® ys. other dbms



Proposal of built-in replication

® by NTT OSSC @ PGCon 2008 Ottawa
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Features
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Log shipping
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Record-based log shipping
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No migration required
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Per database cluster granularity
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Shared nothing

Shared nothing
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Synchronization modes

® async
® recv
® fsync

® apply
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recv mode
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fsync mode
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apply mode
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Synchronization mode

Master Slave
modes
fsync | recv | fsync | apply
async "
recv v v
fsync v v v
apply v v v
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My favorite mode
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Online Re-sync
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Built-in

® Easy to install and use

® Highly active community
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Hot Standby
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Hot Standby Overview

® Allows users to connect in read-only mode
- Allowed: SELECT, SET, LOAD, COMMIT/ROLLBACK
- Disallowed: INSERT, UPDATE, DELETE, CREATE, 2PC,
- SELECT ... FOR SHARE/UPDATE, nextval(), LOCK

- No admin commands:
ANALYZE, VACUUM, REINDEX, GRANT

® Simple configuration
- recovery _connections =on  # default on

® Performance Overhead
- Master: <0.1% overhead from additional WAL
- Standby: 2% CPU overhead

® Queries continue running when exit recovery



Hot Standby Query Conflicts

Master: Connections can interfere and deadlock

Standby: Queries can conflict with recovery
- Recovery always wins

Causes of conflicts
- Cleanup records (HOT, VACUUM)
- Btree cleanup records are a problem!
- DROP DATABASE, DROP TABLESPACE
Conflict resolution
- Wait, then Cancel - set with max_standby delay



How does 1t work?

Read-only transactions forced

Snapshot data emulated on standby
- Minimal information inferred from WAL

Locks held only for AccessExclusivelLocks
Cache invalidations
Careful analysis of conflicts



Project Deliverables

Virtual Transactions (8.3) (Florian/Tom)
Atomic Subtransactions (8.4) (simon)
Database consistent state (8.4) (Simon/Heikki)

Bgwriter active during recovery (8.4)
(Simon/Heikki)

Removal of DB/Auth Flat File (8.5) (tom)
Main Hot Standby patch (8.5) (Simon/Heikki)

Removal of Non-Transactional Cache Inval
(Tom!)

Advanced PITR functions (8.5) (simon)



Project Overview

o Touches ~80 files, >10,000 lines

o Effort

- Analysis & Dev  ~7 man months from Simon

- Testing by 5 staff in 2ndQuadrant, led by
Gianni Ciolli

- Lengthy review by Heikki Linnakangas
« Changes

- Around 50% of bugs found by code inspection

- > 50 changes and enhancements as a result of
refactoring, review and discussion



Demo



Scenario

® Configuration

® Checking of basic features

® Lailover



Configuration

Master Slave
port = 5432 port = 9999
host = 192.168.0.99
$HOME
master -- SPGDATA
- archive_master -- archival area
— slave -- $PGDATA

_ archive_slave

-- archival area




Configuration

1. create the initial database cluster in the master
as usual

$ initdb -D master --locale=C --encoding=UTF8

2. Enable XLOG archiving

$ mkdir archive_master

$ emacs master/postgresqgl.conf

archive_mode =on

archive_command = “cp %p ../archive_master/%f’



Configuration

3. Set the maximum number of concurrent
connections from the slaves

$ emacs master/postgresgl.conf
max_wal_ senders =5

4. set up connections and authentication

$ emacs master/postgresqgl.conf
listen_addresses = “192.168.0.99°

$ emacs master/pg_hba.conf
host replication postgres 192.168.0.99/32 trust



Configuration
5. start postgres on the master

$ pg_ctl -D master start

6. Make a base backup, load it onto the slave

$ psqgl -p5432 -c”’SELECT pg_start_backup(‘demo’, true)”
$ cp -r master slave
$ psql -p5432 -c’SELECT pg_stop_backup()”



Configuration
1. Change the slave’s configuration

$ rm slave/postmaster.pid

$ mkdir archive_slave

$ emacs slave/postgresgl.conf

port = 9999

archive_command = “‘cp %p ../archive_slave/%f’



Configuration
3. Create a recovery.conf in the slave

$ emacs slave/recovery.conf
standby mode = ‘on’

primary_conninfo = ‘host=192.168.0.99 port=5432
user=postgres’

trigger_file = *../trigger’

9. start postgres on the slave

$ pg_ctl -D slave start



Checking of basic features

® Sessionl on master
$ psql -p5432
=# CREATE TABLE demo (i int);
=# INSERT INTO demo VALUES (generate_series(1,100));
//write gueries can be executed on master
=# SELECT count(*) FROM demo;
//read queries also can be executed on master

® Sessionl on slave
$ psql -p9999
=# SELECT count(*) FROM demo;
//read queries can be executed on slave
=# INSERT INTO demo VALUES (9999);

//error occurs: write queries cannot be executed on
slave



Correct handling of snapshots

® Sessionl on slave
=# BEGIN;
=# SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
//cannot see the transaction which starts after this
=# SELECT count(*) FROM demo;

® Sessionl on master
=# INSERT INTO demo VALUES(generate_series(1, 100));

® Sessionl on slave
=# SELECT count(*) FROM demo;

//result=100, cannot see the recent insertion on master
because of serializable isolation level

® Session 2 on slave
=# SELECT count(*) FROM demo;
//result=200, the recent insertion is visible



Lock propagation

® Sessionl on master
=# BEGIN;
=# LOCK TABLE demo;
=# SELECT pg_switch_xlog();
//required to ship the WAL of “LOCK TABLE” to slave

® Sessionl on slave
=# SELECT count(*) FROM demo;
//sleep until “LOCK TABLE” is committed on master

® Sessionn2 on slave
=# SELECT current_qguery, waiting FROM pg_stat_activity;
//shows query waiting

® Sessionl on master
#= COMMIT;
//the waliting query gets up



Failover

® Let’s see the query is still running when failover
completes

® Sessionl on slave
=# SELECT pg_sleep(20);

® Kill the master’s postmaster
$ pg_ctl -D master -mi stop

® Bring the slave up
$ touch trigger
$ psql -p9999
#= SELECT current_query FROM pg_stat_activity;
//can see pg_sleep is still running
#= INSERT INTO demo VALUES(9999);

//write gueries can be executed because slave becomes
master



Ending



Road to v8.5

® Needs your help
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