Streaming Replication

&

Hot Standby

v8.5 ~

Client

O
qu‘ery/

Hot Standby

Master

Streaming Replication

Why Streaming Replication & Hot Standby?

High Availability

-

Client

O\guery

~

Load Balancing

-

Client

query O query

Master / Slave

.

~

Schedule

1. Talk: Streaming Replication
2. Talk: Hot Standby

3. Demo

NTT
Open Source
Software Center

Streaming Replication

Masao Fujii
NTT OSS Center

Copyright(c)2009 NTT, Inc. All Rights Reserved.

Fujii Masao

® Database engineer at NTT OSS Center
® Support and consulting

® Implementing Streaming Replication

History

Historical policy

® Avoid putting replication into core Postgres

® No "one size fits all" replication solution

Replication War!?

PL/Proxy rubyrep

Postgres-2 warm-standb pemirror
Cybercluster y

Slony-I
PGCluster-II \ ‘ syncreplicator
Postgres-R m Mammoth
Londiste
pgpool Sequoia ,l' Bucardo |
pgpool-Il PyReplica RepDB wn

GridSQL PGCluster PostgresForest

No default choice

® Too complex to use for simple cases

® ys. other dbms

Proposal of built-in replication

® by NTT OSSC @ PGCon 2008 Ottawa

Ls

. Core team statement

~ ®Itis time to include a SIMple, reliable

\
i ~ basic replication feature in the COIe
&

system o

NOT replace the existing projects

=

Features

Master - Slaves

Client

write query
Master /

]

|| m— L@ changes

el

Log shipping

Client

write query
Master Slave

W —r — ey
l /Recovery

— — o

WAL WAL Database

Record-based log shipping

Record-based

Master \

No migration required

Client Client

.. .

Stand-alone

Per database cluster granularity

Per database cluster Per table
))))
N N N N
+—>
N " " N
Master Slave Master Slave

Shared nothing

Shared nothing

i

Master Slave

—

=

Shared disk
=

—

¥

Slave

Synchronization modes

® async
® recv
® fsync

® apply

async mode

Client
COMMV E
Master Success
/4

EE@
| rom

q

recv mode

Client

WMV@

Master Success

EI

fsync mode

Client
COMMV E
Master Success
/4

apply mode

Client

COMMV E
Master /"Success” Slave
4 2

l fsync recv

Database

BT =

apply (Recovery)

q

Synchronization mode

Master Slave
modes
fsync | recv | fsync | apply
async "
recv v v
fsync v v v
apply v v v

fast

\ 4
durable

My favorite mode

Client

COMMV i
Master /"Success” Slave

e —— g

recv

fsync

58 &I

Online Re-sync

Client

Built-in

® Easy to install and use

® Highly active community

2ndQuadrant +

Professional PostgreSQL

Hot Standby

Simon Riggs
2nd Quadrant

simon@2ndQuadrant.com

Hot Standby

PRIMARY

AN

Transaction Log Shipping

« Run queries
while still In
recovery

STANDBY

v

1

postgres

L

—
DB

startup -

4 > User
N

Hot Standby Overview

® Allows users to connect in read-only mode
- Allowed: SELECT, SET, LOAD, COMMIT/ROLLBACK
- Disallowed: INSERT, UPDATE, DELETE, CREATE, 2PC,
- SELECT ... FOR SHARE/UPDATE, nextval(), LOCK

- No admin commands:
ANALYZE, VACUUM, REINDEX, GRANT

® Simple configuration
- recovery _connections =on # default on

® Performance Overhead
- Master: <0.1% overhead from additional WAL
- Standby: 2% CPU overhead

® Queries continue running when exit recovery

Hot Standby Query Conflicts

Master: Connections can interfere and deadlock

Standby: Queries can conflict with recovery
- Recovery always wins

Causes of conflicts
- Cleanup records (HOT, VACUUM)
- Btree cleanup records are a problem!
- DROP DATABASE, DROP TABLESPACE
Conflict resolution
- Wait, then Cancel - set with max_standby delay

How does 1t work?

Read-only transactions forced

Snapshot data emulated on standby
- Minimal information inferred from WAL

Locks held only for AccessExclusivelLocks
Cache invalidations
Careful analysis of conflicts

Project Deliverables

Virtual Transactions (8.3) (Florian/Tom)
Atomic Subtransactions (8.4) (simon)
Database consistent state (8.4) (Simon/Heikki)

Bgwriter active during recovery (8.4)
(Simon/Heikki)

Removal of DB/Auth Flat File (8.5) (tom)
Main Hot Standby patch (8.5) (Simon/Heikki)

Removal of Non-Transactional Cache Inval
(Tom!)

Advanced PITR functions (8.5) (simon)

Project Overview

o Touches ~80 files, >10,000 lines

o Effort

- Analysis & Dev ~7 man months from Simon

- Testing by 5 staff in 2ndQuadrant, led by
Gianni Ciolli

- Lengthy review by Heikki Linnakangas
« Changes

- Around 50% of bugs found by code inspection

- > 50 changes and enhancements as a result of
refactoring, review and discussion

Demo

Scenario

® Configuration

® Checking of basic features

® Lailover

Configuration

Master Slave
port = 5432 port = 9999
host = 192.168.0.99
$HOME
master -- SPGDATA
- archive_master -- archival area
— slave -- $PGDATA

_ archive_slave

-- archival area

Configuration

1. create the initial database cluster in the master
as usual

$ initdb -D master --locale=C --encoding=UTF8

2. Enable XLOG archiving

$ mkdir archive_master

$ emacs master/postgresqgl.conf

archive_mode =on

archive_command = “cp %p ../archive_master/%f’

Configuration

3. Set the maximum number of concurrent
connections from the slaves

$ emacs master/postgresgl.conf
max_wal_ senders =5

4. set up connections and authentication

$ emacs master/postgresqgl.conf
listen_addresses = “192.168.0.99°

$ emacs master/pg_hba.conf
host replication postgres 192.168.0.99/32 trust

Configuration
5. start postgres on the master

$ pg_ctl -D master start

6. Make a base backup, load it onto the slave

$ psqgl -p5432 -c”’SELECT pg_start_backup(‘demo’, true)”
$ cp -r master slave
$ psql -p5432 -c’SELECT pg_stop_backup()”

Configuration
1. Change the slave’s configuration

$ rm slave/postmaster.pid

$ mkdir archive_slave

$ emacs slave/postgresgl.conf

port = 9999

archive_command = “‘cp %p ../archive_slave/%f’

Configuration
3. Create a recovery.conf in the slave

$ emacs slave/recovery.conf
standby mode = ‘on’

primary_conninfo = ‘host=192.168.0.99 port=5432
user=postgres’

trigger_file = *../trigger’

9. start postgres on the slave

$ pg_ctl -D slave start

Checking of basic features

® Sessionl on master
$ psql -p5432
=# CREATE TABLE demo (i int);
=# INSERT INTO demo VALUES (generate_series(1,100));
//write gueries can be executed on master
=# SELECT count(*) FROM demo;
//read queries also can be executed on master

® Sessionl on slave
$ psql -p9999
=# SELECT count(*) FROM demo;
//read queries can be executed on slave
=# INSERT INTO demo VALUES (9999);

//error occurs: write queries cannot be executed on
slave

Correct handling of snapshots

® Sessionl on slave
=# BEGIN;
=# SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
//cannot see the transaction which starts after this
=# SELECT count(*) FROM demo;

® Sessionl on master
=# INSERT INTO demo VALUES(generate_series(1, 100));

® Sessionl on slave
=# SELECT count(*) FROM demo;

//result=100, cannot see the recent insertion on master
because of serializable isolation level

® Session 2 on slave
=# SELECT count(*) FROM demo;
//result=200, the recent insertion is visible

Lock propagation

® Sessionl on master
=# BEGIN;
=# LOCK TABLE demo;
=# SELECT pg_switch_xlog();
//required to ship the WAL of “LOCK TABLE” to slave

® Sessionl on slave
=# SELECT count(*) FROM demo;
//sleep until “LOCK TABLE” is committed on master

® Sessionn2 on slave
=# SELECT current_qguery, waiting FROM pg_stat_activity;
//shows query waiting

® Sessionl on master
#= COMMIT;
//the waliting query gets up

Failover

® Let’s see the query is still running when failover
completes

® Sessionl on slave
=# SELECT pg_sleep(20);

® Kill the master’s postmaster
$ pg_ctl -D master -mi stop

® Bring the slave up
$ touch trigger
$ psql -p9999
#= SELECT current_query FROM pg_stat_activity;
//can see pg_sleep is still running
#= INSERT INTO demo VALUES(9999);

//write gueries can be executed because slave becomes
master

Ending

Road to v8.5

® Needs your help

m
2ndQuadrant + @® i
Professional PostgreSQL Opanourcz
Software Center

Postgres

	Streaming Replication��&��Hot Standby
	High Availability
	Streaming Replication
	Shared nothing
	Fail Over
	Hot Standby
	Hot Standby Overview
	Hot Standby Query Conflicts
	How does it work?
	Project Deliverables
	Project Overview

