
Streaming Replication

&

Hot Standby

query

Hot Standby
Client

Streaming Replication

query

SlaveMaster

changes

v8.5～

High Availability Load Balancing

Master Slave

Client

Master Slave

Client

Why Streaming Replication & Hot Standby?

query queryquery

Schedule

1. Talk: Streaming Replication

2. Talk: Hot Standby

3. Demo

Streaming Replication

Masao Fujii
NTT OSS Center

Copyright(c)2009 NTT, Inc. All Rights Reserved.

Fujii Masao

• Database engineer at NTT OSS Center

• Support and consulting

• Implementing Streaming Replication

History

Historical policy

• Avoid putting replication into core Postgres

• No "one size fits all" replication solution

Replication War!?

pgpool

Cybercluster
Slony-I

Bucardo

warm-standby

Londiste
Sequoia

PGCluster
PostgresForest

Postgres-R
Mammoth

syncreplicator

PyReplica

PGCluster-II

PL/Proxy

pgpool-II RepDB

DBmirror

twin

rubyrep

Postgres-2

GridSQL

No default choice

• Too complex to use for simple cases

• vs. other dbms

Proposal of built-in replication

• by NTT OSSC @ PGCon 2008 Ottawa

Core team statement

• It is time to include a simple, reliable

basic replication feature in the core
system

• NOT replace the existing projects

Features

Slaves

Master

write query

Client

changes

Master - Slaves

WAL
Recovery

DatabaseWALWAL

write query
Master

Client

Slave

Log shipping

Record-based log shipping

Record-based

File-based

Master

Slave

Slave

No migration required

Master

Client

Slave

Client

Stand-alone

Per database cluster Per table

Per database cluster granularity

Master Slave Master Slave

Shared nothing Shared disk

Master Slave Master Slave

Shared nothing

Synchronization modes

• async

• recv

• fsync

• apply

Master Slave

Client

COMMIT

“Success”

WAL

fsync

async mode

Master Slave

Client

COMMIT

“Success”

WAL

fsync

WAL

recv

recv mode

Master Slave

Client

COMMIT

“Success”

WAL

fsync

WAL

recv

WAL

fsync

fsync mode

Master Slave

Client

COMMIT

“Success”

WAL

apply (Recovery)

WAL

recv
Database

fsync

apply mode

Master Slave

fsync recv

✔

✔

✔

fsync

async ✔

apply

✔

recv ✔

fsync ✔

apply ✔ ✔

modes
fast

durable

Synchronization mode

Master Slave

Client

COMMIT

“Success”

WAL

recv
fsync

My favorite mode

WAL

Fail Over Split

Master Slave

Client

Master Slave

Client

Online Re-sync

Master

Slave

Client

Built-in

• Easy to install and use

• Highly active community

Simon Riggs
2nd Quadrant

simon@2ndQuadrant.com

Hot Standby

Hot Standby

PRIMARY

postgres

startup
DB

STANDBY

Run queries
while still in
recovery

User

Transaction Log Shipping

Hot Standby Overview

• Allows users to connect in read-only mode
– Allowed: SELECT, SET, LOAD, COMMIT/ROLLBACK
– Disallowed: INSERT, UPDATE, DELETE, CREATE, 2PC,
– SELECT … FOR SHARE/UPDATE, nextval(), LOCK
– No admin commands:

ANALYZE, VACUUM, REINDEX, GRANT

• Simple configuration
– recovery_connections = on # default on

• Performance Overhead
– Master: <0.1% overhead from additional WAL
– Standby: 2% CPU overhead

• Queries continue running when exit recovery

Hot Standby Query Conflicts

• Master: Connections can interfere and deadlock
• Standby: Queries can conflict with recovery

– Recovery always wins

• Causes of conflicts
– Cleanup records (HOT, VACUUM)
– Btree cleanup records are a problem!
– DROP DATABASE, DROP TABLESPACE

• Conflict resolution
– Wait, then Cancel – set with max_standby_delay

How does it work?

• Read-only transactions forced
• Snapshot data emulated on standby

– Minimal information inferred from WAL

• Locks held only for AccessExclusiveLocks
• Cache invalidations
• Careful analysis of conflicts

Project Deliverables

• Virtual Transactions (8.3) (Florian/Tom)

• Atomic Subtransactions (8.4) (Simon)

• Database consistent state (8.4) (Simon/Heikki)

• Bgwriter active during recovery (8.4)
(Simon/Heikki)

• Removal of DB/Auth Flat File (8.5) (Tom)

• Main Hot Standby patch (8.5) (Simon/Heikki)

• Removal of Non-Transactional Cache Inval
(Tom!)

• Advanced PITR functions (8.5) (Simon)

Project Overview

Touches ~80 files, >10,000 lines
Effort
− Analysis & Dev ~7 man months from Simon
− Testing by 5 staff in 2ndQuadrant, led by

Gianni Ciolli
− Lengthy review by Heikki Linnakangas

Changes
− Around 50% of bugs found by code inspection
− > 50 changes and enhancements as a result of

refactoring, review and discussion

Demo

Scenario

• Configuration

• Checking of basic features

• Failover

Configuration

Master
port = 5432

Slave
port = 9999

$HOME

master -- $PGDATA

archive_master -- archival area

slave -- $PGDATA

archive_slave -- archival area

host = 192.168.0.99

1. Create the initial database cluster in the master
as usual

$ initdb –D master -–locale=C --encoding=UTF8

2. Enable XLOG archiving

$ mkdir archive_master
$ emacs master/postgresql.conf
archive_mode = on
archive_command = ‘cp %p ../archive_master/%f’

Configuration

3. Set the maximum number of concurrent
connections from the slaves

$ emacs master/postgresql.conf
max_wal_senders = 5

4. Set up connections and authentication

$ emacs master/postgresql.conf
listen_addresses = ‘192.168.0.99’

$ emacs master/pg_hba.conf
host replication postgres 192.168.0.99/32 trust

Configuration

5. Start postgres on the master

$ pg_ctl –D master start

6. Make a base backup, load it onto the slave

$ psql –p5432 –c”SELECT pg_start_backup(‘demo’, true)”
$ cp –r master slave
$ psql –p5432 –c”SELECT pg_stop_backup()”

Configuration

7. Change the slave’s configuration

$ rm slave/postmaster.pid
$ mkdir archive_slave
$ emacs slave/postgresql.conf
port = 9999
archive_command = ‘cp %p ../archive_slave/%f’

Configuration

8. Create a recovery.conf in the slave

$ emacs slave/recovery.conf
standby_mode = ‘on’
primary_conninfo = ‘host=192.168.0.99 port=5432

user=postgres’
trigger_file = ‘../trigger’

9. Start postgres on the slave

$ pg_ctl –D slave start

Configuration

• Session1 on master
$ psql –p5432
=# CREATE TABLE demo (i int);
=# INSERT INTO demo VALUES (generate_series(1,100));

//write queries can be executed on master
=# SELECT count(*) FROM demo;

//read queries also can be executed on master

• Session1 on slave
$ psql –p9999
=# SELECT count(*) FROM demo;

//read queries can be executed on slave
=# INSERT INTO demo VALUES (9999);

//error occurs: write queries cannot be executed on
slave

Checking of basic features

• Session1 on slave
=# BEGIN;
=# SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

//cannot see the transaction which starts after this
=# SELECT count(*) FROM demo;

• Session1 on master
=# INSERT INTO demo VALUES(generate_series(1, 100));

• Session1 on slave
=# SELECT count(*) FROM demo;

//result=100, cannot see the recent insertion on master
because of serializable isolation level

• Session 2 on slave
=# SELECT count(*) FROM demo;

//result=200, the recent insertion is visible

Correct handling of snapshots

• Session1 on master
=# BEGIN;
=# LOCK TABLE demo;
=# SELECT pg_switch_xlog();

//required to ship the WAL of “LOCK TABLE” to slave

• Session1 on slave
=# SELECT count(*) FROM demo;

//sleep until “LOCK TABLE” is committed on master

• Sessionn2 on slave
=# SELECT current_query, waiting FROM pg_stat_activity;

//shows query waiting

• Session1 on master
#= COMMIT;

//the waiting query gets up

Lock propagation

• Let’s see the query is still running when failover
completes

• Session1 on slave
=# SELECT pg_sleep(20);

• Kill the master’s postmaster
$ pg_ctl –D master –mi stop

• Bring the slave up
$ touch trigger
$ psql –p9999
#= SELECT current_query FROM pg_stat_activity;

//can see pg_sleep is still running
#= INSERT INTO demo VALUES(9999);

//write queries can be executed because slave becomes
master

Failover

Ending

Road to v8.5

• Needs your help

Postgres

	Streaming Replication��&��Hot Standby
	High Availability
	Streaming Replication
	Shared nothing
	Fail Over
	Hot Standby
	Hot Standby Overview
	Hot Standby Query Conflicts
	How does it work?
	Project Deliverables
	Project Overview

