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Fujii Masao

• Database engineer at NTT OSS Center

• Support and consulting

• Implementing Streaming Replication



History



Historical policy

• Avoid putting replication into core Postgres

• No "one size fits all" replication solution



Replication War!?
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No default choice

• Too complex to use for simple cases

• vs. other dbms



Proposal of built-in replication

• by NTT OSSC @ PGCon 2008 Ottawa



Core team statement

• It is time to include a simple, reliable 

basic replication feature in the core
system

• NOT replace the existing projects



Features
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Record-based log shipping

Record-based

File-based

Master

Slave

Slave



No migration required
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Stand-alone



Per database cluster Per table

Per database cluster granularity

Master Slave Master Slave



Shared nothing Shared disk

Master Slave Master Slave

Shared nothing



Synchronization modes

• async

• recv

• fsync

• apply
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Master Slave
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Fail Over Split
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Built-in

• Easy to install and use

• Highly active community



Simon Riggs
2nd Quadrant

simon@2ndQuadrant.com

Hot Standby



Hot Standby

PRIMARY

postgres

startup
DB

STANDBY

Run queries
while still in 
recovery 

User

Transaction Log Shipping



Hot Standby Overview

• Allows users to connect in read-only mode
– Allowed: SELECT, SET, LOAD, COMMIT/ROLLBACK
– Disallowed: INSERT, UPDATE, DELETE, CREATE, 2PC,
– SELECT … FOR SHARE/UPDATE, nextval(), LOCK
– No admin commands: 

ANALYZE, VACUUM, REINDEX, GRANT

• Simple configuration
– recovery_connections = on      # default on

• Performance Overhead
– Master: <0.1% overhead from additional WAL
– Standby: 2% CPU overhead 

• Queries continue running when exit recovery 



Hot Standby Query Conflicts

• Master: Connections can interfere and deadlock
• Standby: Queries can conflict with recovery

– Recovery always wins

• Causes of conflicts
– Cleanup records (HOT, VACUUM)
– Btree cleanup records are a problem!
– DROP DATABASE, DROP TABLESPACE

• Conflict resolution
– Wait, then Cancel – set with max_standby_delay



How does it work?

• Read-only transactions forced
• Snapshot data emulated on standby

– Minimal information inferred from WAL

• Locks held only for AccessExclusiveLocks
• Cache invalidations
• Careful analysis of conflicts



Project Deliverables

• Virtual Transactions (8.3) (Florian/Tom)

• Atomic Subtransactions (8.4) (Simon)

• Database consistent state (8.4) (Simon/Heikki)

• Bgwriter active during recovery (8.4) 
(Simon/Heikki)

• Removal of DB/Auth Flat File (8.5) (Tom)

• Main Hot Standby patch (8.5) (Simon/Heikki)

• Removal of Non-Transactional Cache Inval
(Tom!)

• Advanced PITR functions (8.5) (Simon)



Project Overview

Touches ~80 files, >10,000 lines
Effort
− Analysis & Dev ~7 man months from Simon
− Testing by 5 staff in 2ndQuadrant, led by 

Gianni Ciolli
− Lengthy review by Heikki Linnakangas

Changes
− Around 50% of bugs found by code inspection
− > 50 changes and enhancements as a result of 

refactoring, review and discussion



Demo



Scenario

• Configuration

• Checking of basic features

• Failover



Configuration

Master
port = 5432

Slave
port = 9999

$HOME

master -- $PGDATA

archive_master -- archival area

slave -- $PGDATA

archive_slave -- archival area

host = 192.168.0.99



1. Create the initial database cluster in the master 
as usual

$ initdb –D master -–locale=C  --encoding=UTF8

2. Enable XLOG archiving

$ mkdir archive_master
$ emacs master/postgresql.conf
archive_mode = on
archive_command = ‘cp %p ../archive_master/%f’

Configuration



3. Set the maximum number of concurrent 
connections from the slaves

$ emacs master/postgresql.conf
max_wal_senders = 5

4. Set up connections and authentication

$ emacs master/postgresql.conf
listen_addresses = ‘192.168.0.99’

$ emacs master/pg_hba.conf
host  replication postgres 192.168.0.99/32  trust

Configuration



5. Start postgres on the master

$ pg_ctl –D master start

6. Make a base backup, load it onto the slave

$ psql –p5432 –c”SELECT pg_start_backup(‘demo’, true)”
$ cp –r master slave
$ psql –p5432 –c”SELECT pg_stop_backup()”

Configuration



7. Change the slave’s configuration

$ rm slave/postmaster.pid
$ mkdir archive_slave
$ emacs slave/postgresql.conf
port = 9999
archive_command = ‘cp %p ../archive_slave/%f’

Configuration



8. Create a recovery.conf in the slave

$ emacs slave/recovery.conf
standby_mode = ‘on’
primary_conninfo = ‘host=192.168.0.99 port=5432 

user=postgres’
trigger_file = ‘../trigger’

9. Start postgres on the slave

$ pg_ctl –D slave start

Configuration



• Session1 on master
$ psql –p5432
=# CREATE TABLE demo (i int);
=# INSERT INTO demo VALUES (generate_series(1,100));

//write queries can be executed on master
=# SELECT count(*) FROM demo;

//read queries also can be executed on master

• Session1 on slave
$ psql –p9999
=# SELECT count(*) FROM demo;

//read queries can be executed on slave
=# INSERT INTO demo VALUES (9999); 

//error occurs: write queries cannot be executed on 
slave

Checking of basic features



• Session1 on slave
=# BEGIN;
=# SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;

//cannot see the transaction which starts after this
=# SELECT count(*) FROM demo;

• Session1 on master
=# INSERT INTO demo VALUES(generate_series(1, 100));

• Session1 on slave
=# SELECT count(*) FROM demo;

//result=100, cannot see the recent insertion on master 
because of serializable isolation level

• Session 2 on slave
=# SELECT count(*) FROM demo;

//result=200, the recent insertion is visible

Correct handling of snapshots



• Session1 on master
=# BEGIN;
=# LOCK TABLE demo;
=# SELECT pg_switch_xlog();

//required to ship the WAL of “LOCK TABLE” to slave

• Session1 on slave
=# SELECT count(*) FROM demo; 

//sleep until “LOCK TABLE” is committed on master

• Sessionn2 on slave
=# SELECT current_query, waiting FROM pg_stat_activity;

//shows query waiting

• Session1 on master
#= COMMIT;

//the waiting query gets up

Lock propagation



• Let’s see the query is still running when failover 
completes

• Session1 on slave
=# SELECT pg_sleep(20);

• Kill the master’s postmaster
$ pg_ctl –D master –mi stop

• Bring the slave up
$ touch trigger
$ psql –p9999
#= SELECT current_query FROM pg_stat_activity;

//can see pg_sleep is still running
#= INSERT INTO demo VALUES(9999);

//write queries can be executed because slave becomes 
master

Failover



Ending



Road to v8.5

• Needs your help



Postgres
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