他のバージョンの文書9.6 | 9.5 | 9.4 | 9.3 | 9.2 | 9.1 | 9.0 | 8.4 | 8.3 | 8.2 | 8.1 | 8.0 | 7.4 | 7.3 | 7.2

38.3. マテリアライズドビュー

PostgreSQLにおけるマテリアライズドビューはビューのようにルールシステムを使用しますが、あたかもテーブルであるかのような形態で結果を保持します。

CREATE MATERIALIZED VIEW mymatview AS SELECT * FROM mytab;

CREATE TABLE mymatview AS SELECT * FROM mytab;

の間の主な違いは、その後にマテリアライズドビューを直接更新できない事と、マテリアライズドビューを作成するために使われたクエリがビューと全く同様の方法で保持され、以下のコマンドを用いて最新のデータでマテリアライズドビューを再構築できる事です。

REFRESH MATERIALIZED VIEW mymatview;

マテリアライズドビューに関する情報はPostgreSQLシステムカタログでビューやテーブルに対するものと全く同様に保持されています。 そのため、パーサにとってマテリアライズドビューはテーブルやビューと同じリレーションです。 問い合わせでマテリアライズドビューが参照された時、あたかもテーブルのように、データはマテリアライズドビューから直接返されます。ルールはマテリアライズドビューにデータを投入する時にだけ使用されます。

多くの場合、マテリアライズドビューに格納されているデータの参照は、ビューを通して、あるいはビューから参照されているテーブルを直接参照するよりも高速ですが、データが常に最新であるとは限りません。ですが、時には最新のデータは必要でない事もあります。 販売履歴を記録するテーブルの例を考えてみましょう。

CREATE TABLE invoice (
    invoice_no    integer        PRIMARY KEY,
    seller_no     integer,       -- ID of salesperson
    invoice_date  date,          -- date of sale
    invoice_amt   numeric(13,2)  -- amount of sale
);

もし利用者が過去の販売データを速やかにグラフ化可能であってほしいと考えるなら、彼らはデータの要約を望むのであって、最新のデータが不完全である事は気にしないでしょう。

CREATE MATERIALIZED VIEW sales_summary AS
  SELECT
      seller_no,
      invoice_date,
      sum(invoice_amt)::numeric(13,2) as sales_amt
    FROM invoice
    WHERE invoice_date < CURRENT_DATE
    GROUP BY
      seller_no,
      invoice_date
    ORDER BY
      seller_no,
      invoice_date;

CREATE UNIQUE INDEX sales_summary_seller
  ON sales_summary (seller_no, invoice_date);

このマテリアライズドビューは営業担当用に作成されるダッシュボードのグラフを表示するのにぴったりでしょう。以下のSQLを使った統計情報を更新ジョブを毎晩スケジュールしておくことができます。

REFRESH MATERIALIZED VIEW sales_summary;

それ以外のマテリアライズドビューの用途として、外部データラッパを通じてリモートシステムから取得したデータの高速化が挙げられます。 以下の例はfile_fdwを用いた単純な例で、実行時間を含みますが、これはローカルシステムのキャッシュ機構を用いているため、リモートシステムに対する外部データラッパへの性能の違いの方が劇的です。 セットアップ:

CREATE EXTENSION file_fdw;
CREATE SERVER local_file FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE words (word text NOT NULL)
  SERVER local_file
  OPTIONS (filename '/etc/dictionaries-common/words');
CREATE MATERIALIZED VIEW wrd AS SELECT * FROM words;
CREATE UNIQUE INDEX wrd_word ON wrd (word);
CREATE EXTENSION pg_trgm;
CREATE INDEX wrd_trgm ON wrd USING gist (word gist_trgm_ops);
VACUUM ANALYZE wrd;

file_fdwを直接用いて字句のスペルチェックをしてみましょう。

SELECT count(*) FROM words WHERE word = 'caterpiler';

 count 
-------
     0
(1 row)

プランは以下の通りです:

 Aggregate  (cost=4125.19..4125.20 rows=1 width=0) (actual time=26.013..26.014 rows=1 loops=1)
   ->  Foreign Scan on words  (cost=0.00..4124.70 rows=196 width=0) (actual time=26.011..26.011 rows=0 loops=1)
         Filter: (word = 'caterpiler'::text)
         Rows Removed by Filter: 99171
         Foreign File: /etc/dictionaries-common/words
         Foreign File Size: 938848
 Total runtime: 26.081 ms

代わりにマテリアライズドビューを使った場合、クエリは非常に速くなります。

 Aggregate  (cost=4.44..4.45 rows=1 width=0) (actual time=0.074..0.074 rows=1 loops=1)
   ->  Index Only Scan using wrd_word on wrd  (cost=0.42..4.44 rows=1 width=0) (actual time=0.071..0.071 rows=0 loops=1)
         Index Cond: (word = 'caterpiler'::text)
         Heap Fetches: 0
 Total runtime: 0.119 ms

どちらの場合でも、wordの綴りは間違っています。では、我々が望んでいたであろう結果を得るために、もう一度file_fdwを使ってみます。 (訳注:検索条件の正しい綴りは"caterpillar"

SELECT word FROM words ORDER BY word <-> 'caterpiler' LIMIT 10;

     word     
---------------
 cater
 caterpillar
 Caterpillar
 caterpillars
 caterpillar's
 Caterpillar's
 caterer
 caterer's
 caters
 catered
(10 rows)

 Limit  (cost=2195.70..2195.72 rows=10 width=32) (actual time=218.904..218.906 rows=10 loops=1)
   ->  Sort  (cost=2195.70..2237.61 rows=16765 width=32) (actual time=218.902..218.904 rows=10 loops=1)
         Sort Key: ((word <-> 'caterpiler'::text))
         Sort Method: top-N heapsort  Memory: 25kB
         ->  Foreign Scan on words  (cost=0.00..1833.41 rows=16765 width=32) (actual time=0.046..200.965 rows=99171 loops=1)
               Foreign File: /etc/dictionaries-common/words
               Foreign File Size: 938848
 Total runtime: 218.966 ms

マテリアライズドビューを使用した場合:

 Limit  (cost=0.28..1.02 rows=10 width=9) (actual time=24.916..25.079 rows=10 loops=1)
   ->  Index Scan using wrd_trgm on wrd  (cost=0.28..7383.70 rows=99171 width=9) (actual time=24.914..25.076 rows=10 loops=1)
         Order By: (word <-> 'caterpiler'::text)
 Total runtime: 25.884 ms

定期的にリモートのデータをローカルに更新せねばならない事を許容できるのであれば、代わりに性能上の便益を得られることでしょう。